A quantitative confidence signal detection model: 2. Confidence analysis

Author:

Yi Yongwoo12,Wang Wei34,Merfeld Daniel M.5

Affiliation:

1. Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts

2. Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts

3. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts

4. Department of Medicine, Harvard Medical School, Boston, Massachusetts

5. Otolaryngology — Head and Neck Surgery, The Ohio State University, Columbus, Ohio

Abstract

Decision making is a fundamental subfield within neuroscience. While recent findings have yielded major advances in our understanding of decision making, confidence in such decisions remains poorly understood. In this paper, we present a confidence signal detection (CSD) model that combines a standard signal detection model yielding a noisy decision variable with a model of confidence. The CSD model requires quantitative measures of confidence obtained by recording confidence probability judgments. Specifically, we model confidence probability judgments for binary direction recognition (e.g., did I move left or right) decisions. We use our CSD model to study both confidence calibration (i.e., how does confidence compare with performance) and the distributions of confidence probability judgments. We evaluate two variants of our CSD model: a conventional model with two free parameters (CSD2) that assumes that confidence is well calibrated and our new model with three free parameters (CSD3) that includes an additional confidence scaling factor. On average, our CSD2 and CSD3 models explain 73 and 82%, respectively, of the variance found in our empirical data set. Furthermore, for our large data sets consisting of 3,600 trials per subject, correlation and residual analyses suggest that the CSD3 model better explains the predominant aspects of the empirical data than the CSD2 model, especially for subjects whose confidence is not well calibrated. Moreover, simulations show that asymmetric confidence distributions can lead traditional confidence calibration analyses to suggest “underconfidence” even when confidence is perfectly calibrated. These findings show that this CSD model can be used to help improve our understanding of confidence and decision making. NEW & NOTEWORTHY We make life-or-death decisions each day; our actions depend on our “confidence.” Though confidence, accuracy, and response time are the three pillars of decision making, we know little about confidence. In a previous paper, we presented a new model — dependent on a single scaling parameter — that transforms decision variables to confidence. Here we show that this model explains the empirical human confidence distributions obtained during a vestibular direction recognition task better than standard signal detection models.

Funder

HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3