Direction Selectivity of Neurons in the Macaque Lateral Intraparietal Area

Author:

Fanini Alessandra,Assad John A.

Abstract

The lateral intraparietal area (LIP) of the macaque is believed to play a role in the allocation of attention and the plan to make saccadic eye movements. Many studies have shown that LIP neurons generally encode the static spatial location demarked by the receptive field (RF). LIP neurons might also provide information about the features of visual stimuli within the RF. For example, LIP receives input from cortical areas in the dorsal visual pathway that contain many direction-selective neurons. Here we examine direction selectivity of LIP neurons. Animals were only required to fixate while motion stimuli appeared in the RF. To avoid spatial confounds, the motion stimuli were patches of randomly arrayed dots that moved with 100% coherence in eight different directions. We found that the majority (61%) of LIP neurons were direction selective. The direction tuning was fairly broad, with a median direction-tuning bandwidth of 136°. The average strength of direction selectivity was weaker in LIP than that of other areas of the dorsal visual stream but that difference may be because of the fact that LIP neurons showed a tonic offset in firing whenever a visual stimulus was in the RF, independent of direction. Direction-selective neurons do not seem to constitute a functionally distinct subdivision within LIP, because those neurons had robust, sustained delay-period activity during a memory delayed saccade task. The direction selectivity could also not be explained by asymmetries in the spatial RF, in the hypothetical case that the animals attended to slightly different locations depending on the direction of motion in the RF. Our results show that direction selectivity is a distinct attribute of LIP neurons in addition to spatial encoding.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference56 articles.

1. Direction and orientation selectivity of neurons in visual area MT of the macaque

2. Andersen RA. The role of the inferior parietal lobule in spatial perception and visual-motor integration. In: The Handbook of Physiology. Section I: The Nervous System Volume V. Higher Functions of the Brain Part 2, edited by Plum F, Mountcastle VB, Geiger SR. Bethesda, MD: American Physiological Society, 1987, p. 483–518.

3. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule

4. Encoding of Spatial Location by Posterior Parietal Neurons

5. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3