Stimulation-Induced Formation of the Reserve Pool of Vesicles in Drosophila Motor Boutons

Author:

Akbergenova Yulia,Bykhovskaia Maria

Abstract

We combined electron microscopy (EM), synaptic vesicle staining by fluorescent marker FM1-43, photoconversion of the dye into an electron dense product, and electrical recordings of synaptic responses to study the distribution of reserve and recycling vesicles and its dependence on stimulation in Drosophila motor boutons. We showed that, at rest, vesicles are distributed over the periphery of the bouton, with the recycling and reserve pools being intermixed and the central core of the bouton being devoid of vesicles. Continuous high-frequency stimulation followed by a resting period mobilized the reserve vesicles into the recycling pool and, most notably, produced an increase in vesicle abundance. Recordings of synaptic activity from the temperature-sensitive endocytosis mutant shibire during continuous stimulation until complete depression provided an independent estimate of the increase in vesicle abundance on intense stimulation. EM analysis demonstrated that continuous stimulation produced an increase in the vesicle density, whereas during a subsequent resting period, vesicles filled empty areas of the bouton, spreading toward its central core. Although the observed structural potentiation did not alter basal transmitter release, it produced an increased synaptic enhancement during high-frequency stimulation. The latter effect was not observed when the boutons were potentiated using high-frequency stimulation without a subsequent resting period. We concluded therefore that the newly formed vesicles replenish the reserve pool during a resting period following intense stimulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3