Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury

Author:

Thompson Aiko K.1ORCID,Cote Rachel H.1,Sniffen Janice M.2,Brangaccio Jodi A.3

Affiliation:

1. Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina

2. Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York

3. Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York

Abstract

The activity of corticospinal pathways is important in movement control, and its plasticity is essential for motor skill learning and re-learning after central nervous system (CNS) injuries. Therefore, enhancing the corticospinal function may improve motor function recovery after CNS injuries. Operant conditioning of stimulus-induced muscle responses (e.g., reflexes) is known to induce the targeted plasticity in a targeted pathway. Thus, an operant conditioning protocol to target the corticospinal pathways may be able to enhance the corticospinal function. To test this possibility, we investigated whether operant conditioning of the tibialis anterior (TA) motor evoked potential (MEP) to transcranial magnetic stimulation can enhance corticospinal excitability in people with and without chronic incomplete spinal cord injury (SCI). The protocol consisted of 6 baseline and 24 up-conditioning/control sessions over 10 wk. In all sessions, TA MEPs were elicited at 10% above active MEP threshold while the sitting participant provided a fixed preset level of TA background electromyographic activity. During baseline sessions, MEPs were simply measured. During conditioning trials of the conditioning sessions, the participant was encouraged to increase MEP and was given immediate feedback indicating whether MEP size was above a criterion. In 5/8 participants without SCI and 9/10 with SCI, over 24 up-conditioning sessions, MEP size increased significantly to ~150% of the baseline value, whereas the silent period (SP) duration decreased by ~20%. In a control group of participants without SCI, neither MEP nor SP changed. These results indicate that MEP up-conditioning can facilitate corticospinal excitation, which is essential for enhancing motor function recovery after SCI. NEW & NOTEWORTHY We investigated whether operant conditioning of the motor evoked potential (MEP) to transcranial magnetic stimulation can systematically increase corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA) in people with and without chronic incomplete spinal cord injury. We found that up-conditioning can increase the TA MEP while reducing the accompanying silent period (SP) duration. These findings suggest that MEP up-conditioning produces the facilitation of corticospinal excitation as targeted, whereas it suppresses inhibitory mechanisms reflected in SP.

Funder

Morton Cure Paralysis Fund (MCPF)

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

New York State Department of Health, Spinal Cord Injury Research Trust

HHS | NIH | National Institute of General Medical Sciences (NIGMS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3