Muscle Reflexes and Synergies Triggered by an Unexpected Support Surface Height During Walking

Author:

van der Linden Marleen H.,Marigold Daniel S.,Gabreëls Fons J.M.,Duysens Jacques

Abstract

An important phase in the step cycle is foot contact. When the moment of foot contact differs from the one expected, a fast response is needed. Such a mismatch can be caused by hitting a support surface earlier or later than expected. To study this, experiments were performed with healthy young adults who walked on a platform that was unexpectedly at a lowered (5 cm) or at a level height. Glasses blocked the lower visual field. In the unexpectedly lowered trials, the absence of expected heel contact triggered responses in the ipsilateral anti-gravity muscles [ipsilateral medial gastrocnemius (MGi), ipsilateral rectus femoris (RFi)] and contralateral flexor muscles [contralateral tibialis anterior (TAc), contralaterial biceps femoris (BFc)] with latencies of 47–69 ms. After the delayed heel contact, enhanced activity was found in the MGi, RFi, and TAc muscles. This specific muscle synergy was presumably activated to arrest the forward propulsion of the body. In contrast, when the surface was unexpectedly at level height, the subjects expected to step down, and the leg briefly yielded. A muscle synergy was activated at 46–81 ms that flexed the ipsilateral knee (TAi, BFi, RFi) and extended the contralateral one (MGc, BFc) to unload the perturbed leg and delay the contralateral swing phase. Both conditions triggered a fast functionally relevant muscle synergy because of a mismatch between the expected and actual sensory feedback at the moment of foot contact. The results are consistent with an internal model that compares the expected with the actual sensory feedback. The short latency of the response suggests a subcortical, possibly cerebellar pathway.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3