Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades

Author:

Tian Xiaoguang123,Yoshida Masatoshi45,Hafed Ziad M.13ORCID

Affiliation:

1. Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany

2. Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany

3. Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany

4. Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan

5. School of Life Science, The Graduate University for Advanced Studies, Hayama, Japan

Abstract

Microsaccades are systematically modulated by peripheral spatial cues, and these eye movements have been implicated in perceptual and motor performance changes in cueing tasks. However, an additional oculomotor factor that may also influence performance in these tasks, fixational eye position itself, has been largely neglected so far. Using precise eye tracking and real-time retinal-image stabilization, we carefully analyzed fixational eye position dynamics and related them to microsaccade generation during spatial cueing. As expected, during baseline fixation, microsaccades corrected for a foveal motor error away from the preferred retinal locus of fixation (the so-called ocular position “set point” of the oculomotor system). However, we found that this relationship was violated during a short period immediately after cue onset; a subset of cue-directed “express microsaccades” that were highly precise in time and direction, and that were larger than regular microsaccades, occurred. These movements, having <100-ms latencies from cue onset, were triggered when fixational eye position was already at the oculomotor set point when the cue appeared; they were thus error-increasing rather than error-decreasing. Critically, even when no microsaccades occurred, fixational eye position itself was systematically deviated toward the cue, again with ~100-ms latency, suggesting that the oculomotor system establishes a new set point at different postcue times. This new set point later switched to being away from the cue after ~200–300 ms. Because eye position alters the location of retinal images, our results suggest that both eye position and microsaccades can be associated with performance changes in spatial cueing tasks. NEW & NOTEWORTHY Covert spatial cueing tasks are a workhorse for studying cognitive processing in humans and monkeys, but gaze is not perfectly stable during these tasks. We found that minute fixational eye position changes, independent of the more studied microsaccades, are not random in cueing tasks and are thus not “averaged out” in analyses. These changes can additionally dictate microsaccade times. Thus, in addition to microsaccadic influences, retinal image changes associated with fixational eye position are relevant for performance in cueing tasks.

Funder

Deutsche Forschungsgemeinschaft (DFG)

Japan International Cooperation Agency (Agencia de Cooperación Internacional del Japón)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3