Author:
Linster Christiane,Sachse Silke,Galizia C. Giovanni
Abstract
Olfactory responses require the representation of high-dimensional olfactory stimuli within the constraints of two-dimensional neural networks. We used a computational model of the honeybee antennal lobe to test how inhibitory interactions in the antennal lobe should be organized to best reproduce the experimentally measured input-output function in this structure. Our simulations show that a functionally organized inhibitory network, as opposed to an anatomically or all-to-all organized inhibitory network, best reproduces the input-output function of the antennal lobe observed with calcium imaging. In this network, inhibition between each pair of glomeruli was proportional to the similarity of their odor-response profiles. We conclude that contrast enhancement between odorants in the honeybee antennal lobe is best achieved when interglomerular inhibition is organized based on glomerular odor response profiles rather than on anatomical neighborhood relations.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献