Ca2+-Activated K+-Current Density Is Correlated With Soma Size in Rat Vestibular-Afferent Neurons in Culture

Author:

Limón Agenor,Pérez Cristina,Vega Rosario,Soto Enrique

Abstract

Vestibular-afferent neurons (VANs) transmit information about linear and angular accelerations during head movements from vestibular end organs to vestibular nuclei. In situ, these neurons show heterogeneous discharge patterns that may be produced by differences in their intrinsic properties. However, little is known about the ionic currents underlying their different firing patterns. Using the whole cell patch-clamp technique, we analyzed the expression of Ca2+and Ca2+-activated K+currents ( IKCa) in primary cultured neurons isolated from young rats (p7–p10). We found two overlapping subpopulations of VANs classified according to low-threshold Ca2+-current [low-voltage–activated (LVA)] expression; LVA (−) neurons, formed by small cells, and LVA (+) neurons composed of medium to large cells. The IKCain both cell-groups was carried through channels of high (BK), intermediate (IK), and low conductance (SK), besides a resistant channel to classical blockers (IR). BK was expressed preferentially in LVA (+) cells, whereas IR expression was preferentially in LVA (−) cells. No correlation between SK and IK expression with the soma size was found. Current-clamp experiments showed that BK participates in the adaptation of discharge and in the duration of the action potential, whereas SK and IK did not show a significant contribution to electrical discharge of cultured VANs. However, because of the low number of VANs in culture with repetitive firing it is difficult to interpret our results in terms of discharge patterns. Our results demonstrate that vestibular-afferent neurons possess different Ca2+-activated K+(KCa) channels and that their expression, heterogeneous among the cells, would contribute to explain some of the differences in the electrical-firing properties of these neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3