Abstract
The Ca2+-dependent slow afterhyperpolarization (AHP) is an important determinant of neuronal excitability. Although it is established that modest changes in extracellular pH (pHo) modulate the slow AHP, the relative contributions of changes in the priming Ca2+ signal and intracellular pH (pHi) to this effect remain poorly defined. To gain a better understanding of the modulation of the slow AHP by changes in pHo, we performed simultaneous recordings of intracellular free calcium concentration ([Ca2+]i), pHi, and the slow AHP in cultured rat hippocampal neurons coloaded with the Ca2+- and pH-sensitive fluorophores fura-2 and SNARF-5F, respectively, and whole cell patch-clamped using the perforated patch technique. Decreasing pHo from 7.2 to 6.5 lowered pHi, reduced the magnitude of depolarization-evoked [Ca2+]i transients, and inhibited the subsequent slow AHP; opposite effects were observed when pHo was increased from 7.2 to 7.5. Although decreases and increases in pHi (at a constant pHo) reduced and augmented, respectively, the slow AHP in the absence of marked changes in preceding [Ca2+]i transients, the inhibition of the slow AHP by decreases in pHo was correlated with low pHo-dependent reductions in [Ca2+]i transients rather than the decreases in pHi that accompanied the decreases in pHo. In contrast, high pHo-induced increases in the slow AHP were correlated with the accompanying increases in pHi rather than high pHo-dependent increases in [Ca2+]i transients. The results indicate that changes in pHo modulate the slow AHP in a manner that depends on the direction of the pHo change and substantiate a role for changes in pHi in modulating the slow AHP during changes in pHo.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献