Sensory-Spatial Transformations in the Left Posterior Parietal Cortex May Contribute to Reach Timing

Author:

Torres Elizabeth B.1,Raymer Anastasia2,Gonzalez Rothi Leslie J.3,Heilman Kenneth M.3,Poizner Howard4

Affiliation:

1. Psychology Department, Rutgers University, Piscataway, New Jersey;

2. Department of Veterans Affairs, Early Childhood Special Education & Special Education, Child Study Center, Old Dominion University, Norfolk, Virginia;

3. Department of Neurology, McKnight Brain Institute, Gainesville, Florida; and

4. Institute for Neural Computation, University of California, La Jolla, California

Abstract

The posterior parietal cortex (PPC) contains viewer-centered spatial maps important for reaching movements. It is known that spatial reaching deficits emerge when this region is damaged, yet less is known about temporal deficits that may also emerge because of a failure in sensory-spatial transformations. This work introduces a new geometric measure to quantify multimodal sensory transformation and integration deficits affecting the tempo of reaching trajectories that are induced by injury to the left PPC. Erratic rates of positional change involving faulty maps from rotational angular displacements to translational linear displacements contributed to temporal abnormalities in the reach. Such disruptions were quantified with a time-invariant geometric measure. This measure, paired with an experimental paradigm that manipulated the source of visual guidance for reaches, was used to compare the performance of normal controls to those from a patient (T.R.) who had a lesion in his left-PPC. For controls, the source of visual guidance significantly scaled the tempo of target-directed reaches but did not change the geometric measure. This was not the case in patient T.R., who altered this measure. With continuous, extrapersonal visual feedback of the target, however, these abnormalities improved. Vision of the target rather than vision of his moving hand also improved his arm-joint rotations for posture control. These results show that the left PPC is critically important for visuo-motor transformations that specifically rely on extrapersonal cues to align rotational-arm and linear-hand displacements and to continuously integrate their rates of change. The intactness of this system contributes to the fluidity of the reach's tempo.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3