Modulation of Sympathetic and Somatomotor Function by the Ventromedial Medulla

Author:

Nason Malcolm W.1,Mason Peggy1

Affiliation:

1. Committee on Neurobiology and Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637

Abstract

The ventromedial medulla is implicated in a variety of functions including nociceptive and cardiovascular modulation and the control of thermoregulation. To determine whether single microinjections into the ventromedial medulla elicit changes in one or multiple functional systems, the GABAA receptor antagonist bicuculline was microinjected (70 nl, 5–50 ng) into the ventromedial medulla of lightly anesthetized rats, and cardiovascular, respiratory, and nociceptive measures were recorded. Bicuculline microinjection into either the midline raphe or the laterally adjacent reticular nucleus simultaneously increased interscapular brown adipose tissue temperature, heart rate, blood pressure, expired [CO2], and respiration rate and elicited shivering. Bicuculline microinjection also decreased the noxious stimulus-evoked changes in heart rate and blood pressure, decreased the frequency of heat-evoked sighs, and suppressed the cortical desynchronization evoked by noxious stimulation. Although bicuculline suppressed the motor withdrawal evoked by noxious tail heat, it enhanced the motor withdrawal evoked by noxious paw heat, evidence for specifically patterned nociceptive modulation. Saline microinjections into midline or lateral sites had no effect on any measured variable. All bicuculline microinjections, midline or lateral, evoked the same set of physiological effects, consistent with the lack of a topographical organization within the ventromedial medulla. Furthermore, as predicted by the isodendritic morphology of cells in the ventromedial medulla, midline bicuculline microinjection increased the number of c-fos immunoreactive cells in both midline raphe and lateral reticular nuclei. In summary, 70-nl microinjections into ventromedial medulla activate cells in multiple nuclei and elicit increases in sympathetic and somatomotor tone and a novel pattern of nociceptive modulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3