Estrous cycle-induced sex differences in medium spiny neuron excitatory synaptic transmission and intrinsic excitability in adult rat nucleus accumbens core

Author:

Proaño Stephanie B.123,Morris Hannah J.3,Kunz Lindsey M.3,Dorris David M.3,Meitzen John2345

Affiliation:

1. Graduate Program in Biology, North Carolina State University, Raleigh, North Carolina

2. W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina

3. Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina

4. Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina

5. Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina

Abstract

Naturally occurring hormone cycles in adult female humans and rodents create a dynamic neuroendocrine environment. These cycles include the menstrual cycle in humans and its counterpart in rodents, the estrous cycle. These hormone fluctuations induce sex differences in the phenotypes of many behaviors, including those related to motivation, and associated disorders such as depression and addiction. This suggests that the neural substrate instrumental for these behaviors, including the nucleus accumbens core (AcbC), likewise differs between estrous cycle phases. It is unknown whether the electrophysiological properties of AcbC output neurons, medium spiny neurons (MSNs), change between estrous cycle phases. This is a critical knowledge gap given that MSN electrophysiological properties are instrumental for determining AcbC output to efferent targets. Here we test whether the intrinsic electrophysiological properties of adult rat AcbC MSNs differ across female estrous cycle phases and from males. We recorded MSNs with whole cell patch-clamp technique in two experiments, the first using gonad-intact adult males and females in differing phases of the estrous cycle and the second using gonadectomized males and females in which the estrous cycle was eliminated. MSN intrinsic electrophysiological and excitatory synaptic input properties robustly changed between female estrous cycle phases and males. Sex differences in MSN electrophysiology disappeared when the estrous cycle was eliminated. These novel findings indicate that AcbC MSN electrophysiological properties change across the estrous cycle, providing a new framework for understanding how biological sex and hormone cyclicity regulate motivated behaviors and other AcbC functions and disorders. NEW & NOTEWORTHY This research is the first demonstration that medium spiny neuron electrophysiological properties change across adult female hormone cycle phases in any striatal region. This influence of estrous cycle engenders sex differences in electrophysiological properties that are eliminated by gonadectomy. Broadly, these findings indicate that adult female hormone cycles are an important factor for neurophysiology.

Funder

HHS | NIH | National Institute of Mental Health (NIMH)

HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3