The integration of visual and target signals in V4 and IT during visual object search

Author:

Roth Noam1ORCID,Rust Nicole C.1ORCID

Affiliation:

1. Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania

Abstract

Searching for a specific visual object requires our brain to compare the items in view with a remembered representation of the sought target to determine whether a target match is present. This comparison is thought to be implemented, in part, via the combination of top-down modulations reflecting target identity with feed-forward visual representations. However, it remains unclear whether top-down signals are integrated at a single locus within the ventral visual pathway (e.g., V4) or at multiple stages [e.g., both V4 and inferotemporal cortex (IT)]. To investigate, we recorded neural responses in V4 and IT as rhesus monkeys performed a task that required them to identify when a target object appeared across variation in position, size, and background context. We found nonvisual, task-specific signals in both V4 and IT. To evaluate whether V4 was the only locus for the integration of top-down signals, we evaluated several feed-forward accounts of processing from V4 to IT, including a model in which IT preferentially sampled from the best V4 units and a model that allowed for nonlinear IT computation. IT task-specific modulation was not accounted for by any of these feed-forward descriptions, suggesting that during object search, top-down signals are integrated directly within IT. NEW & NOTEWORTHY To find specific objects, the brain must integrate top-down, target-specific signals with visual information about objects in view. However, the exact route of this integration in the ventral visual pathway is unclear. In the first study to systematically compare V4 and inferotemporal cortex (IT) during an invariant object search task, we demonstrate that top-down signals found in IT cannot be described as being inherited from V4 but rather must be integrated directly within IT itself.

Funder

HHS | NIH | National Eye Institute

Simons Foundation

National Science Foundation

McKnight Foundation

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3