Author:
Hanajima Ritsuko,Chen Robert,Ashby Peter,Lozano Andres M.,Hutchison William D.,Davis Karen D.,Dostrovsky Jonathan O.
Abstract
Very fast oscillations (VFOs; 500–1,500 Hz) are associated with sensory-evoked potentials (SEPs), but their origin is unknown. To characterize the origins of VFOs, we studied 35 patients with deep brain stimulation (DBS) electrodes [15 with thalamic and 20 with the subthalamic nucleus (STN) electrodes]. We recorded median nerve stimulation–evoked SEPs from the thalamus and STN with microelectrodes during stereotactic surgery and from the contacts of the DBS electrodes postoperatively. We also examined the firing of individual neurons in thalamus in relation to the VFOs. In the thalamus, VFOs with frequencies around 1,000 Hz were superimposed on slow potentials. Both slow and fast SEP components showed phase reversals in the somatosensory thalamus [ventralis caudalis (Vc)]. Median nerve poststimulus time histograms showed that single thalamic neurons fired at preferred times at intervals between 0.8 to 1.2 ms that were synchronous with the VFOs, although the neurons fired only once or a few times per trial. In the STN, low-amplitude SEPs with VFOs were observed at a latency similar to the thalamic SEPs. The VFOs from STN probably represent volume conduction, possibly from the medial lemniscus. We conclude that the thalamic VFOs are generated within Vc and that they induce time-locked firing in a network of neurons.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献