Different spatial frequency bands selectively signal for natural image statistics in the early visual system

Author:

Hansen Bruce C.1,Johnson Aaron P.2,Ellemberg Dave3

Affiliation:

1. Department of Psychology & Neuroscience Program, Colgate University, Hamilton, New York;

2. Department of Psychology, Concordia University, Montréal, Québec, Canada; and

3. Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Université de Montréal, Québec, Canada

Abstract

Early visual evoked potentials (VEPs) measured in humans have recently been observed to be modulated by the image statistics of natural scene imagery. Specifically, the early VEP is dominated by a strong positivity when participants view minimally complex natural scene imagery, with the magnitude of that component being modulated by luminance contrast differences across spatial frequency (i.e., the slope of the amplitude spectrum). For scenes high in structural complexity, the early VEP is dominated by a prominent negativity that exhibits little dependency on luminance contrast. However, since natural scene imagery is broad band in terms of spatial frequency, it is not known whether the above-mentioned modulation results from a complex interaction within or between the early neural processes tuned to different bands of spatial frequency. Here, we sought to address this question by measuring early VEPs (specifically, the C1, P1, and N1 components) while human participants viewed natural scene imagery that was filtered to contain specific bands of spatial frequency information. The results show that the C1 component is largely unmodulated by the luminance statistics of natural scene imagery (being only measurable when such stimuli were made to contain high spatial frequencies). The P1 and N1, on the other hand, were observed to exhibit strong spatial frequency-dependent modulation to the luminance statistics of natural scene imagery. The results therefore suggest that the dependency of early VEPs on natural image statistics results from an interaction between the early neural processes tuned to different bands of spatial frequency.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3