Automatic spike sorting for high-density microelectrode arrays

Author:

Diggelmann Roland12ORCID,Fiscella Michele12,Hierlemann Andreas1,Franke Felix1ORCID

Affiliation:

1. Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland

2. Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Abstract

High-density microelectrode arrays can be used to record extracellular action potentials from hundreds to thousands of neurons simultaneously. Efficient spike sorters must be developed to cope with such large data volumes. Most existing spike sorting methods for single electrodes or small multielectrodes, however, suffer from the “curse of dimensionality” and cannot be directly applied to recordings with hundreds of electrodes. This holds particularly true for the standard reference spike sorting algorithm, principal component analysis-based feature extraction, followed by k-means or expectation maximization clustering, against which most spike sorters are evaluated. We present a spike sorting algorithm that circumvents the dimensionality problem by sorting local groups of electrodes independently with classical spike sorting approaches. It is scalable to any number of recording electrodes and well suited for parallel computing. The combination of data prewhitening before the principal component analysis-based extraction and a parameter-free clustering algorithm obviated the need for parameter adjustments. We evaluated its performance using surrogate data in which we systematically varied spike amplitudes and spike rates and that were generated by inserting template spikes into the voltage traces of real recordings. In a direct comparison, our algorithm could compete with existing state-of-the-art spike sorters in terms of sensitivity and precision, while parameter adjustment or manual cluster curation was not required. NEW & NOTEWORTHY We present an automatic spike sorting algorithm that combines three strategies to scale classical spike sorting techniques for high-density microelectrode arrays: 1) splitting the recording electrodes into small groups and sorting them independently; 2) clustering a subset of spikes and classifying the rest to limit computation time; and 3) prewhitening the spike waveforms to enable the use of parameter-free clustering. Finally, we combined these strategies into an automatic spike sorter that is competitive with state-of-the-art spike sorters.

Funder

ERC Advanced Grants

Swiss National Science Foundation Sinergia Projects

Swiss SystemsX IPhD

Swiss National Science Foundation Ambizione Grant

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3