Taste activity in the parabrachial region in adult rats following neonatal chorda tympani transection

Author:

Martin Louis J1,Breza Joseph M.2,Sollars Suzanne3

Affiliation:

1. Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, United States

2. Psychology, Eastern Michigan, United States

3. Psychology & Neuroscience, University of Nebraska at Omaha, United States

Abstract

The chorda tympani is a gustatory nerve that nerve fails to regenerate if sectioned in rats 10 days of age or younger. This early denervation causes an abnormally high preference for NH4Cl in adult rats, but the impact of neonatal chorda tympani transection on the development of the gustatory hindbrain is unclear. Here, we tested the effect of neonatal chorda tympani transection (CTX) on gustatory responses in the parabrachial nucleus (PbN). We recorded in vivo extracellular spikes in single PbN units of urethane-anesthetized adult rats following CTX at P5 (chronic CTX group) or immediately prior to recording (acute CTX group). Thus, all sampled PbN neurons received indirect input from taste nerves other than the CT. Compared to acute CTX rats, chronic CTX animals had significantly higher responses to stimulation with 0.1 and 0.5 M NH4Cl, 0.1 NaCl, and 0.01 M citric acid. Activity to 0.5 M sucrose and 0.01 M quinine stimulation was not significantly different between groups. Neurons from chronic CTX animals also had larger interstimulus correlations and significantly higher entropy, suggesting that neurons in this group were more likely to be activated by stimulation with multiple tastants. Although neural responses were higher in the PbN of chronic CTX rats compared to acute-sectioned controls, taste-evoked activity was much lower than observed in previous reports, suggesting permanent deficits in taste signaling. These findings demonstrate that the developing gustatory hindbrain exhibits high functional plasticity following early nerve injury.

Funder

University of Nebraska at Omaha Office of Research and Creative Activity

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3