Effect of Neuritic Cables on Conductance Estimates for Remote Electrical Synapses

Author:

Prinz Astrid A.1,Fromherz Peter1

Affiliation:

1. Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, D 82152 Martinsried, Germany

Abstract

The conductance of electrical synapses is usually estimated from voltage recordings at the neuronal somata under the assumption that each cell is isopotential. This approach neglects effects of intervening neurites. For a cell pair with unbranched neurites and an electrical synapse at their ends, we used cable theory to derive an analytical expression that relates the synaptic conductance to voltage recordings at the cell bodies and to the neurite properties. The equation implies that the conventional method significantly underestimates the actual synapse conductance if the neurite length is comparable to the electrotonic length constant and if the synaptic conductance is similar to the serial neurite conductance. For an experimental test, we cultured pairs of snail neurons on protein patterns, resulting in a geometry that matched the theoretical model. Using the isopotential theory, we estimated the synapse conductances and found them to be rather weak. To obtain the cable properties, we recorded spatiotemporal maps of signal propagation in the neurites using a voltage-sensitive dye. Fits of these maps to a passive cable model showed that the snail neurons are electrotonically rather compact. Given these features of our experimental system, the synaptic conductances derived with the nonisopotential model deviated from the estimates of the isopotential theory by about 13%. This discrepancy, although small, shows that even in electrotonically compact neurons coupled by weak synapses the impact of the neuritic cables on conductance estimates cannot be neglected. When applied to less compact and more strongly coupled cell pairs in vivo, our approach can supply the realistic estimates of synaptic conductances that are necessary for a better understanding of the role of electrical coupling in neural systems.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3