Sensitive Response to Low-Frequency Cochlear Distortion Products in the Auditory Midbrain

Author:

Abel Cornelius,Kössl Manfred

Abstract

During auditory stimulation with several frequency components, distortion products (DPs) are generated as byproduct of nonlinear cochlear amplification. After generated, DP energy is reemitted into the ear channel where it can be measured as DP otoacoustic emission (DPOAE), and it also induces an excitatory response at cochlear places related to the DP frequencies. We measured responses of 91 inferior colliculus (IC) neurons in the gerbil during two-tone stimulation with frequencies well above the unit's receptive field but adequate to generate a distinct distortion product (f2-f1 or 2f1-f2) at the unit's characteristic frequency (CF). Neuronal responses to DPs could be accounted for by the simultaneously measured DPOAEs for DP frequencies >1.3 kHz. For DP frequencies <1.3 kHz ( n = 25), there was a discrepancy between intracochlear DP magnitude and DPOAE level, and most neurons responded as if the intracochlear DP level was significantly higher than the DPOAE level in the ear channel. In 12% of those low-frequency neurons, responses to the DPs could be elicited even if the stimulus tone levels were below the threshold level of the neuron at CF. High intracochlear f2-f1 and 2f1-f2 DP-levels were verified by cancellation of the neuronal DP response with a third phase-adjusted tone stimulus at the DP frequency. A frequency-specific reduction of middle ear gain at low frequencies is possibly involved in the reduction of DPOAE level. The results indicate that pitch-related properties of complex stimuli may be produced partially by high intracochlear f2-f1 distortion levels.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3