Polyamines Modulate AMPA Receptor–Dependent Synaptic Responses in Immature Layer V Pyramidal Neurons

Author:

Shin Jieun1,Shen Fran1,Huguenard John R.1

Affiliation:

1. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California

Abstract

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) mediate the majority of fast excitation in the CNS. Receptors lacking GluR2 exhibit inward rectification and paired-pulse facilitation (PPF) due to polyamine (PA)-dependent block and unblock, respectively. In this study, we tested whether rectification and PPF in immature, but not mature, pyramidal neurons depend not only on the absence of functional GluR2 but also on the level of endogenous PAs. Whole cell recordings were obtained from layer V pyramidal neurons of P12–P14 or P16–P20 rats in the presence or absence of spermine in the pipette (50 μM). Isolated minimal excitatory synaptic responses were obtained, and paired (20 Hz) stimuli were used to investigate the rectification index (RI) and paired-pulse ratio (PPR). Spermine and its synthetic enzyme, ornithine decarboxylase (ODC), expression was examined using immunostaining and Western blot, respectively. At the immature stage (<P15) inclusion of intracellular spermine increased rectification and PPF for evoked excitatory postsynaptic currents (EPSCs) but had little or no effect on either measure in more mature (P16–P20) pyramidal neurons. Depletion of PAs reduced rectification suggesting that endogenous PAs play a critical role in functional regulation of AMPARs. Spermine immunoreactivity and ODC expression in immature rat neocortex (<P15) were greater than more mature tissue by ∼20 and 60%, respectively. These results provide further support for the idea that excitatory synapses on immature neocortical pyramidal neurons ubiquitously contain AMPA receptors lacking the GluR2 subunit and that the level of endogenous PAs plays an important role in modulating AMPAR-dependent neurotransmission.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3