Computational Motor Control: Redundancy and Invariance

Author:

Guigon Emmanuel,Baraduc Pierre,Desmurget Michel

Abstract

The nervous system controls the behavior of complex kinematically redundant biomechanical systems. How it computes appropriate commands to generate movements is unknown. Here we propose a model based on the assumption that the nervous system: 1) processes static (e.g., gravitational) and dynamic (e.g., inertial) forces separately; 2) calculates appropriate dynamic controls to master the dynamic forces and progress toward the goal according to principles of optimal feedback control; 3) uses the size of the dynamic commands (effort) as an optimality criterion; and 4) can specify movement duration from a given level of effort. The model was used to control kinematic chains with 2, 4, and 7 degrees of freedom [planar shoulder/elbow, three-dimensional (3D) shoulder/elbow, 3D shoulder/elbow/wrist] actuated by pairs of antagonist muscles. The muscles were modeled as second-order nonlinear filters and received the dynamics commands as inputs. Simulations showed that the model can quantitatively reproduce characteristic features of pointing and grasping movements in 3D space, i.e., trajectory, velocity profile, and final posture. Furthermore, it accounted for amplitude/duration scaling and kinematic invariance for distance and load. These results suggest that motor control could be explained in terms of a limited set of computational principles.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3