DSCF Neurons Within the Primary Auditory Cortex of the Mustached Bat Process Frequency Modulations Present Within Social Calls

Author:

Washington Stuart D.,Kanwal Jagmeet S.

Abstract

Neurons in the Doppler-shifted constant frequency processing (DSCF) area in the primary auditory cortex of mustached bats, Pteronotus parnellii, are multifunctional, responding both to echolocation and communication sounds. Simultaneous presentation of a DSCF neuron's best low and high frequencies (BFlow and BFhigh, respectively) facilitates its response. BFlow corresponds to a frequency in the frequency-modulated (FM) component of the first harmonic in the echolocation pulse, and BFhigh corresponds to the constant frequency (CF) component in the second harmonic of the echo. We systematically varied the slopes, bandwidths, and central frequencies of FMs traversing the BFhigh region to arrive at the “best FM” for single DSCF neurons. We report that nearly half (46%) of DSCF neurons preferred linear FMs to CFs and average response magnitude to FMs was not significantly less ( P = 0.08) than that to CFs at BFhigh when each test stimulus was paired with a CF at BFlow. For linear FMs ranging in slope from 0.04 to 4.0 kHz/ms and in bandwidth from 0.44 to 7.88 kHz, the majority of DSCF neurons preferred upward (55%) to downward (21%) FMs. Central frequencies of the best FMs were typically close to but did not always match a neuron's BFhigh. Neurons exhibited combination-sensitivity to “call fragments” (calls that were band-pass filtered in the BFhigh region) paired with their BFlow. Our data show a close match between the modulation direction of a neuron's best FM and that of its preferred call fragment. These response properties show that DSCF neurons extract multiple parameters of FMs and are specialized for processing both FMs for communication and CFs for echolocation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3