The role of intersegmental dynamics in coordination of the forelimb joints during unperturbed and perturbed skilled locomotion

Author:

Zubair Humza N.12,Stout Erik E.1,Dounskaia Natalia2,Beloozerova Irina N.1

Affiliation:

1. Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona

2. Kinesiology Program, College of Health Solutions, Arizona State University, Tempe, Arizona

Abstract

Joint coordination during locomotion and how this coordination changes in response to perturbations remains poorly understood. We investigated coordination among forelimb joints during the swing phase of skilled locomotion in the cat. While cats walked on a horizontal ladder, one of the cross-pieces moved before the cat reached it, requiring the cat to alter step size. Direction and timing of the cross-piece displacement were manipulated. We found that the paw was transported in space through body translation and shoulder and elbow rotations, whereas the wrist provided paw orientation required to step on cross-pieces. Kinetic analysis revealed a consistent joint control pattern in all conditions. Although passive interaction and gravitational torques were the main sources of shoulder and elbow motions for most of the movement time, shoulder muscle torque influenced movement of the entire limb at the end of the swing phase, accelerating the shoulder and causing interaction torque that determined elbow motion. At the wrist, muscle and passive torques predominantly compensated for each other. In all perturbed conditions, although all joints and the body slightly contributed to changes in the step length throughout the entire movement, the major adjustment was produced by the shoulder at the movement end. We conclude that joint coordination during the swing phase is produced mainly passively, by exploiting gravity and the limb’s intersegmental dynamics, which may simplify the neural control of locomotion. The use of shoulder musculature at the movement end enables flexible responses to environmental disturbances. NEW & NOTEWORTHY This is the first study to investigate joint control during the swing phase of skilled, accuracy-dependent locomotion in the cat and how this control is altered to adapt to known and unexpected perturbations. We demonstrate that a pattern of joint control that exploits gravitational and interaction torques is used in all conditions and that movement modifications are produced mainly by shoulder muscle torque during the last portion of the movement.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3