Dopaminergic-induced changes in Mauthner cell excitability disrupt prepulse inhibition in the startle circuit of goldfish

Author:

Medan Violeta1,Preuss Thomas1

Affiliation:

1. Department of Psychology, Hunter College, City University of New York, New York, New York

Abstract

Prepulse inhibition (PPI) is a widespread sensorimotor gating phenomenon characterized by a decrease in startle magnitude if a nonstartling stimulus is presented 20–1,000 ms before a startling stimulus. Dopaminergic agonists disrupt behavioral PPI in various animal models. This provides an important neuropharmacological link to schizophrenia patients that typically show PPI deficits at distinct (60 ms) prepulse-pulse intervals. Here, we study time-dependent effects of dopaminergic modulation in the goldfish Mauthner cell (M-cell) startle network, which shows PPI-like behavioral and physiological startle attenuations. The unique experimental accessibility of the M-cell system allows investigating the underlying cellular mechanism with physiological stimuli in vivo. Our results show that the dopaminergic agonist apomorphine (2 mg/kg body wt) reduced synaptic M-cell PPI by 23.6% ( n = 18; P = 0.009) for prepulse-pulse intervals of 50 ms, whereas other intervals showed no reduction. Consistently, application of the dopamine antagonist haloperidol (0.4 mg/kg body wt) restored PPI to control level. Current ramp injections while recording M-cell membrane potential revealed that apomorphine acts through a postsynaptic, time-dependent mechanism by deinactivating a M-cell membrane nonlinearity, effectively increasing input resistance close to threshold. This increase is most pronounced for prepulse-pulse intervals of 50 ms (47.9%, n = 8; P < 0.05) providing a time-dependent, cellular mechanism for dopaminergic disruption of PPI. These results provide, for the first time, direct evidence of dopaminergic modulation of PPI in the elementary startle circuit of vertebrates and reemphasize the potential of characterizing temporal aspects of PPI at the physiological level to understand its underlying mechanisms.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3