Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion

Author:

Pratt C. A.,Jordan L. M.

Abstract

The activity of selected single alpha-motoneurons, Renshaw cells (RCs), and Ia inhibitory interneurons (IaINs) during fictive locomotion was recorded via microelectrodes in decerebrate (precollicular-postmammillary) cats in which fictive locomotion was induced by stimulation of the mesencephalic locomotor region. The interrelationships in the timing and frequency of discharge among these three interconnected cell types were determined by comparing their averaged step cycle firing histograms, which were normalized in reference to motoneuron activity recorded in ventral root filaments. Previous findings that RCs are rhythmically active during locomotion and discharge in phase with the motoneurons from which they are excited were confirmed, and further details of the phase relationships between RC and alpha-motoneuron activity during fictive locomotion were obtained. Flexor and extensor RCs became active after the onset of flexor and extensor motoneuron activity, respectively. Maximal activity in extensor RCs occurred at the end of the extension phase coincidental with the onset of hyperpolarization and a decrease in activity in extensor motoneurons. Maximal flexor RC activity occurred during middle to late flexion and was temporally related to the onset of reduced flexor motoneuron activity. The IaINs recorded in the present experiments were rhythmically active during fictive locomotion, as previously reported. The quadriceps IaINs were mainly active during the extension phase of the step cycle, along with extensor RCs. Thus the known inhibition of quadriceps IaINs by RCs coupled to quadriceps and other extensor motoneurons is obviously not sufficient to interfere with the appropriate phasing of IaIN activity and reciprocal inhibition during fictive locomotion, as had been speculated. Most of the quadriceps IaINs analyzed exhibited a decrease in discharge frequency at the end of the extension phase of the step cycle, which was coincidental with increased rates of firing in extensor RCs. These data are consistent with the possibility that extensor RCs contribute to the reduction in quadriceps IaIN discharge at the end of the extension phase of the step cycle. The possibility that IaIN rhythmicity during fictive locomotion arises from periodic inhibition, possibly from Renshaw cells, was tested by stimulating the reciprocal inhibitory pathway throughout the fictive step cycle. The amplitude of Ia inhibitory postsynaptic potentials (IPSPs) varied significantly throughout the fictive step cycle in 14 of the 17 motoneurons tested, and, in 11 of these 14 motoneurons, the Ia IPSPs were maximal during the phase of the step cycle in which the motoneuron was most

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3