An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex

Author:

Jones J. P.1,Palmer L. A.1

Affiliation:

1. Department of Anatomy, University of Pennsylvania School of Medicine, Philadelphia 19104–6058.

Abstract

1. Using the two-dimensional (2D) spatial and spectral response profiles described in the previous two reports, we test Daugman's generalization of Marcelja's hypothesis that simple receptive fields belong to a class of linear spatial filters analogous to those described by Gabor and referred to here as 2D Gabor filters. 2. In the space domain, we found 2D Gabor filters that fit the 2D spatial response profile of each simple cell in the least-squared error sense (with a simplex algorithm), and we show that the residual error is devoid of spatial structure and statistically indistinguishable from random error. 3. Although a rigorous statistical approach was not possible with our spectral data, we also found a Gabor function that fit the 2D spectral response profile of each simple cell and observed that the residual errors are everywhere small and unstructured. 4. As an assay of spatial linearity in two dimensions, on which the applicability of Gabor theory is dependent, we compare the filter parameters estimated from the independent 2D spatial and spectral measurements described above. Estimates of most parameters from the two domains are highly correlated, indicating that assumptions about spatial linearity are valid. 5. Finally, we show that the functional form of the 2D Gabor filter provides a concise mathematical expression, which incorporates the important spatial characteristics of simple receptive fields demonstrated in the previous two reports. Prominent here are 1) Cartesian separable spatial response profiles, 2) spatial receptive fields with staggered subregion placement, 3) Cartesian separable spectral response profiles, 4) spectral response profiles with axes of symmetry not including the origin, and 5) the uniform distribution of spatial phase angles. 6. We conclude that the Gabor function provides a useful and reasonably accurate description of most spatial aspects of simple receptive fields. Thus it seems that an optimal strategy has evolved for sampling images simultaneously in the 2D spatial and spatial frequency domains.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3