Neonatal synapse elimination in the rat submandibular ganglion: effect of retarded target growth

Author:

Womble M. D.1,Roper S.1

Affiliation:

1. Department of Anatomy, University of Colorado Health Sciences Center, Denver 80262.

Abstract

1. We have studied synapse elimination in the submandibular ganglion of neonatal rats to determine the effects of retarded target growth on synaptic development. Neurons of this ganglion provide parasympathetic innervation to the submandibular and sublingual salivary glands. 2. Ligating the main salivary ducts 2–4 days after birth at a point where nerve fibers were not damaged reduces gland weight by 55% during the 2nd wk after birth and 80% by adulthood. 3. In control animals, the average number of preganglionic inputs/neuron normally declines steadily during the first few weeks after birth, before stabilizing during the 5th wk at the control adult level. Between birth and adulthood, the number of ganglionic neurons increases by 150%. 4. Ganglia from duct-ligated animals showed an acceleration in the process of synapse elimination. Input number in experimental ganglia reached the control adult level during the 3rd wk after birth. This acceleration is confined solely to ganglia that innervate the underdeveloped glands. 5. The loss of inputs was not further enhanced by prolonged target atrophy. Thus average input numbers to neurons of 5th wk or adult experimental ganglia were not different from age-matched control values. 6. No differences from control values were seen in most cases for resting potentials, input resistances, or cell size. However, the increase in neuron number was retarded in experimental animals, and the number of synapses/neuronal profile was reduced in the adult animals. 7. Thus subnormal target growth leads to an acceleration in the process of synaptic elimination in neonatal rats. This acceleration may be mediated by alterations in the level of trophic factors emanating from the target.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3