Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range

Author:

Guitton D.1,Volle M.1

Affiliation:

1. Montreal Neurological Institute, McGill University, Quebec,Canada.

Abstract

Gaze, the direction of the visual axis in space, is the sum of the eye position relative to the head (E) plus head position relative to space (H). In the old explanation, which we call the oculocentric motor strategy, of how a rapid orienting gaze shift is controlled, it is assumed that 1) a saccadic eye movement is programmed with an amplitude equal to the target's offset angle, 2) this eye movement is programmed without reference to whether a head movement is planned, 3) if the head turns simultaneously the saccade is reduced in size by an amount equal to the head's contribution, and 4) the saccade is attenuated by the vestibuloocular reflex (VOR) slow phase. Humans have an oculomotor range (OMR) of about +/- 55 degrees. The use of the oculocentric motor strategy to acquire targets lying beyond the OMR requires programming saccades that cannot be made physically. We have studied in normal human subjects rapid horizontal gaze shifts to visible and remembered targets situated within and beyond the OMR at offsets ranging from 30 to 160 degrees. Heads were attached to an apparatus that permitted short unexpected perturbations of the head trajectory. The acceleration and deceleration phases of the head perturbation could be timed to occur at different points in the eye movement. 4. Single-step rapid gaze shifts of all sizes up to at least 160 degrees (the limit studied) could be accomplished with the classic single-eye saccade and an accompanying saccadelike head movement. In gaze shifts less than approximately 45 degrees, when head motion was prevented totally by the brake, the eye attained the target. For larger target eccentricities the gaze shift was interrupted by the brake and the average eye saccade amplitude was approximately 45 degrees, well short of the OMR. Thus saccadic eye movement amplitude was neurally, not mechanically, limited. When the head's motion was not perturbed by the brake, the eye saccade amplitude was a function of head velocity: for a given target offset, the faster the head the smaller the saccade. For gaze shifts to targets beyond the OMR and when head velocity was low, the eye frequently attained the 45 degrees position limit and remained there, immobile, until gaze attained the target.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3