Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. II. Responses to band-pass filtered noises

Author:

Chan J. C.1,Yin T. C.1,Musicant A. D.1

Affiliation:

1. Department of Neurophysiology, University of Wisconsin Medical School,Madison 53706.

Abstract

1. We studied cells in the central nucleus of the inferior colliculus of the cat that were sensitive to interaural time delays (ITDs) in order to evaluate the influence of the stimulus spectrum of noise signals. Stimuli were sharply filtered low-, high-, and band-pass noise signals whose cutoff frequencies and bandwidths were systematically varied. The responses to ITDs of these noise signals were compared with responses obtained to ITDs of broadband noise and pure tones. 2. The discharge rate in response to band-pass noise as a function of ITD was usually a cyclic function with decreasing peak amplitudes at longer ITDs. The reciprocal of the mean interval between adjacent peaks indicated how rapidly the response rate varied with ITD and was termed the response frequency (RF). This RF was approximately equal to the median frequency of the stimulus spectrum filtered by the cell's sync-rate curve, which was the product of the synchronization to interaural phase and the discharge rate plotted against frequency. This suggests that the RF was determined by all the spectral components in the stimulus that fell within the frequency range in which the cell's response was synchronized. The contribution of each component was proportional to the sync-rate for that frequency. 3. The central peak of the ITD function usually fell within the physiological range of ITDs (+/- 400 microseconds). The location of this peak did not vary significantly with changes in stimulus spectrum by comparison with responses to tones of different frequency. Its shape also remained constant, except for a decrease in width when high-frequency components within the range of the sync-rate curve were added to the stimulus. A few cells responded with a minimal discharge instead of a maximal near-zero ITD, and this central minimum had similar properties as the central peak. The amplitude of the secondary peaks of the ITD function decreased as the stimulus bandwidth that overlapped the sync-rate curve broadened. 4. The sum of the ITD functions to two band-pass signals was similar to that of a broadband signal whose spectrum was composed of the sum of the band-pass spectra. 5. From these binaural responses we could make inferences about the response characteristics of the monaural inputs to binaural neurons. We then verified these predictions by studying responses of low-frequency trapezoid body fibers to band-pass noises.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3