In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns

Author:

Dekin M. S.,Getting P. A.

Abstract

1. The ventral part of the nucleus tractus solitarius in guinea pigs comprises the dorsal respiratory group and is composed of three classes of neurons. These have been termed types I, II, and III. Each cell type possesses a unique set of repetitive firing properties. An in vitro brain stem slice preparation was used to study the ionic basis for these repetitive firing properties. 2. Three different membrane currents were shown to contribute to the repetitive firing properties. These were: a slow calcium current (ICa), an early, transient potassium current (IKA), and a calcium-activated potassium current (IKC). Type I and II neurons displayed physiologically significant amounts of these currents; type III neurons did not. 3. During depolarization from potential levels between -50 and -60 mV, the repetitive firing properties of type I and II neurons were determined primarily by ICa and IKC. IKA was inactivated in this potential range. The expression of IKC was greater in type I neurons than in type II neurons, and as a result, type I neurons exhibited a self-terminating burst of spike activity early in depolarization, whereas type II neurons displayed a gradual decline in spike frequency throughout depolarization. 4. The properties of IKA in type I and II neurons were studied using the single-electrode voltage-clamp technique. The kinetics of IKA in type I neurons was approximately twice as slow as those of type II neurons. In addition, the voltage dependence of activation and the removal of inactivation for IKA in type I neurons were shifted by about -10 mV with respect to type II neurons. 5. Depolarization of type I neurons from membrane potential levels where inactivation of IKA was removed caused a decrease in the frequency of the initial burst of spikes. This decrease in spike frequency was result of the coactivation of IKA with ICa. 6. Depolarization of type II neurons from membrane potentials where inactivation of IKA was removed caused a long delay between the onset of depolarization and the beginning of spike activity. The delay in excitation was modulated by both the magnitude and duration of the prestimulus hyperpolarization. This modulation of delayed excitation paralleled the time and voltage dependence for the removal of IKA inactivation in type II neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3