Organization of orientation and direction selectivity in areas 17 and 18 of cat cerebral cortex

Author:

Berman N. E.1,Wilkes M. E.1,Payne B. R.1

Affiliation:

1. Department of Anatomy, Medical College of Pennsylvania, Philadelphia19129.

Abstract

1. The organization of subunits and sequences subserving preferred stimulus orientation and preferred direction of stimulus motion in cat cerebral cortical areas 17 and 18 was determined by making vertical, tangential, and oblique microelectrode penetrations into those areas. 2. Quantitative measurements of direction selectivity indicated that not all shades of direction selectivity are equally represented in area 17. Peaks in the distribution of direction indices may correspond to the bidirectional, direction biased, and direction selective categories used in qualitative studies. 3. The relationship between preferred direction and location in the visual field was examined for units with receptive fields centered more than 15 degrees from the area centralis. Simple cells had orientation preferences that tended to be parallel to radii extending out from the area centralis. Wide-field complex cells had orientation preferences that tended to be parallel to concentric circles centered on the area centralis; the direction preferences of this group were biased toward motion away from the area centralis. 4. Unit pairs separated by 200 microns or less were 4.2 times as likely to have the same preferred direction as to have opposite preferred directions, indicating that, on average, strings of five neurons have similar direction preferences. 5. Tracks in area 18 showed a similar pattern to those in area 17. 6. In the vertical tracks in area 17 a small proportion (12%) of the units recorded in infragranular layers had preferred orientations that deviated 30 degrees or more from the first unit recorded in the same column. The presence of these cells most likely reflects the relative crowding of columns in infragranular layers, which occurs at the crown of the lateral gyrus. Columns with such large jumps in preferred orientation were not observed in area 18, which occupies a relatively flat region of cortex. 7. In both areas 17 and 18 direction preference in vertical tracks usually reversed at least once, either between supra- and infragranular layers or within infragranular layers. Along these same tracks, orientation preference usually did not change. 8. In tangential tracks, preferred direction and orientation preferences changed together in small increments. Occasionally a large jump in preferred direction would occur with only a small change in preferred orientation. These large jumps were considered to mark the boundaries of the direction sequences. Most frequently these boundaries were separated by 400-600 microns. This value is approximately half the size of a complete set of orientation preferences (700-1,200 microns).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3