Affiliation:
1. Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg, Germany
Abstract
The adaptive immune systems have evolved to protect the organism against pathogens encountering the host. Extracellular occurring viruses or bacteria are mainly bound by antibodies from the humoral branch of the immune response, whereas infected or malignant cells are identified and eliminated by the cellular immune system. To enable the recognition, proteins are cleaved into peptides in the cytosol and are presented on the cell surface by class I molecules of the major histocompatibility complex (MHC). The transport of the antigenic peptides into the lumen of the endoplasmic reticulum (ER) and loading onto the MHC class I molecules is an essential process for the presentation to cytotoxic T lymphocytes. The delivery of these peptides is performed by the transporter associated with antigen processing (TAP). TAP is a heterodimer of TAP1 and TAP2, each subunit containing transmembrane domains and an ATP-binding motif. Sequence homology analysis revealed that TAP belongs to the superfamily of ATP-binding cassette transporters. Loss of TAP function leads to a loss of cell surface expression of MHC class I molecules. This may be a strategy for tumors and virus-infected cells to escape immune surveillance. Structure and function of the TAP complex as well as the implications of loss or downregulation of TAP is the topic of this review.
Publisher
American Physiological Society
Subject
Physiology (medical),Molecular Biology,Physiology,General Medicine
Cited by
158 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献