Epithelial sodium channels: function, structure, and regulation

Author:

Garty H.1,Palmer L. G.1

Affiliation:

1. Department of Membrane Research and Biophysics, Weizmann Institute ofScience, Rehovot, Israel.

Abstract

The apical (outward-facing) membranes of high-resistance epithelia contain Na+ channels, traditionally identified by their sensitivity to block by the K(+)-sparing diuretic amiloride. Such channels have been characterized in amphibian skin and urinary bladder, renal collecting duct, distal colon, sweat and salivary glands, lung, and taste buds. They mediate the first step of active Na+ reabsorption and play a major role in the maintenance of electrolyte and water homeostasis in all vertebrates. In the past, these channels were classified according to their biophysical and pharmacological properties. The recent cloning of the three homologous channel subunits denoted alpha-, beta-, and gamma-epithelial Na+ channels (ENaC) has provided a molecular definition of at least one class of amiloride-blockable channels. Subsequent studies have established that ENaC is a major Na(+)-conducting pathway in both absorbing and secretory epithelia and is related to one type of channel involved in mechanosensation. This review summarizes the biophysical characteristics, molecular properties, and regulatory mechanisms of epithelial amiloride-blockable Na+ channels. Special emphasis is given to recent studies utilizing cloned ENaC subunits and purified amiloride-binding proteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3