Store-Operated Calcium Channels

Author:

Parekh Anant B.,Putney James W.

Abstract

In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 1847 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3