Thin and Strong! The Bioengineering Dilemma in the Structural and Functional Design of the Blood-Gas Barrier

Author:

Maina John N.,West John B.

Abstract

In gas exchangers, the tissue barrier, the partition that separates the respiratory media (water/air and hemolymph/blood), is exceptional for its remarkable thinness, striking strength, and vast surface area. These properties formed to meet conflicting roles: thinness was essential for efficient flux of oxygen by passive diffusion, and strength was crucial for maintaining structural integrity. What we have designated as “three-ply” or “laminated tripartite” architecture of the barrier appeared very early in the evolution of the vertebrate gas exchanger. The design is conspicuous in the water-blood barrier of the fish gills through the lungs of air-breathing vertebrates, where the plan first appeared in lungfishes (Dipnoi) some 400 million years ago. The similarity of the structural design of the barrier in respiratory organs of animals that remarkably differ phylogenetically, behaviorally, and ecologically shows that the construction has been highly conserved both vertically and horizontally, i.e., along and across the evolutionary continuum. It is conceivable that the blueprint may have been the only practical construction that could simultaneously grant satisfactory strength and promote gas exchange. In view of the very narrow allometric range of the thickness of the blood-gas barrier in the lungs of different-sized vertebrate groups, the measurement has seemingly been optimized. There is convincing, though indirect, evidence that the extracellular matrix and particularly the type IV collagen in the lamina densa of the basement membrane is the main stress-bearing component of the blood-gas barrier. Under extreme conditions of operation and in some disease states, the barrier fails with serious consequences. The lamina densa which in many parts of the blood-gas barrier is <50 nm thin is a lifeline in the true sense of the word.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Reference266 articles.

1. Abdalla MAand Maina JN.Quantitative analysis of the exchange tissue of the avian lung (Galliformes).J Anat134: 677–680, 1981.

2. Morphometrics of the avian lung. 1. The domestic fowl (Gallus gallus variant domesticus)

3. Alexander McN.Symmorphosis and safety factors. In:Principles of Animal Design: The Optimization and Symmorphosis Debate, edited by Weibel ER, Taylor CR, and Bolis L. Cambridge, UK: Cambridge Univ. Press, 1998, p. 28–35.

4. THE LOCALIZATION OF PROSTAGLANDINS IN THE RABBIT KIDNEYS DEMONSTRATED WITH INDIRECT IMMUNOFLUORESCENCE

5. Aschopf Jand Pohl H.Rhythmic variations in energy metabolism.Federation Proc29: 1541–1552, 1970.

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3