Control of acetylcholine receptors in skeletal muscle

Author:

Fambrough D. M.

Abstract

An ACh receptor is the molecular entity that, in its native habitat, possesses the binding sites for ACh and all the other components required to generate the ion channels mediating the ACh response. Narrower definitions of an ACh receptor (as the binding site for ACh or the polypeptide chain that is folded to form the binding site) could lead to semantic arguments about receptor structure. Experimentally, ACh receptors are defined by their total function (when electrophysiological tests are used) or by ligand binding. There is no evidence that the ligand-binding portions of ACh receptors ever exist in vivo without the associated channel-forming mechanism and vice versa. Most data are consistent with the idea that detergent-solubilized glycoproteins retaining the ACh binding sites of the receptor also include the channel-forming components, although it appears that the mechanism is prone to denaturation or proteolytic damage. Studies of receptor-rich membranes and of solubilized receptor glycoprotein have not yet yielded a totally satisfactory image of receptor structure. Most evidence favors an ACh receptor composed of three or four different types of glycosylated polypeptide chains organized into a unit of aggregate molecular weight about 300,000--400,000 daltons. Plasma membranes are dynamic structures in two different ways. First, their constituent molecules are in rapid thermal motion and, when these molecules are not tethered to extramembranous structures or mired in large aggregates, they fairly rapidly change their position in the plane of the lipid bilayer. Second, all membrane components are continually being synthesized and degraded. Acetylcholine receptors participate in both aspects of this dynamism. In this review it is proposed that the number and the distribution of ACh receptors in skeletal muscle are controlled by modulation of receptor metabolism and modulation of associations between receptor molecules or between receptors and other, as yet unidentified, elements in neuromuscular junctions and at extrajunctional sites where receptors are clustered. The arrangements of receptors in skeletal muscle and the total number of receptors in skeletal muscle may be regulated by separate mechanisms. Clusters of ACh receptors apparently can form spontaneously in extrajunctional areas of denervated muscles and in tissue-cultured embryonic muscle. Such clusters may be positionally stable and the receptor molecules in them may be highly restricted in mobility. Nevertheless, these receptors have average lifetimes on the order of 20 h, just like the nonclustered, mobile extrajunctional receptors. Receptor clusters also form at sites of innervation. In the chick embryo the junctional receptor molecules remain short-lived. The metabolism of ACh receptors is highly regulated. The biosynthesis of receptors commences during myogenesis at about the time myogenic cells become competent to fuse. Later, biosynthesis is dramatically repressed by muscle activity and possibly by other factors...

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 723 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3