Affiliation:
1. Departments of Physiology and Bioengineering, The University of Michigan, Ann Arbor, Michigan
Abstract
Dawson, David C., Stephen S. Smith, and Monique K. Mansoura. CFTR: Mechanism of Anion Conduction. Physiol. Rev. 79, Suppl.: S47–S75, 1999. — The purpose of this review is to collect together the results of recent investigations of anion conductance by the cystic fibrosis transmembrane conductance regulator along with some of the basic background that is a prerequisite for developing some physical picture of the conduction process. The review begins with an introduction to the concepts of permeability and conductance and the Nernst-Planck and rate theory models that are used to interpret these parameters. Some of the physical forces that impinge on anion conductance are considered in the context of permeability selectivity and anion binding to proteins. Probes of the conduction process are considered, particularly permeant anions that bind tightly within the pore and block anion flow. Finally, structure-function studies are reviewed in the context of some predictions for the origin of pore properties.
Publisher
American Physiological Society
Subject
Physiology (medical),Molecular Biology,Physiology,General Medicine
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献