Development of Cardiac Sensitivity to Oxygen Deficiency: Comparative and Ontogenetic Aspects

Author:

Ostadal Bohuslav1,Ostadalova Ivana1,Dhalla Naranjan S.1

Affiliation:

1. Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Center, University of Manitoba, Faculty of Medicine, Winnipeg, Canada

Abstract

Hypoxic states of the cardiovascular system are undoubtedly associated with the most frequent diseases of modern times. They originate as a result of disproportion between the amount of oxygen supplied to the cardiac cell and the amount actually required by the cell. The degree of hypoxic injury depends not only on the intensity and duration of the hypoxic stimulus, but also on the level of cardiac tolerance to oxygen deprivation. This variable changes significantly during phylogenetic and ontogenetic development. The heart of an adult poikilotherm is significantly more resistant as compared with that of the homeotherms. Similarly, the immature homeothermic heart is more resistant than the adult, possibly as a consequence of its greater capability for anaerobic glycolysis. Tolerance of the adult myocardium to oxygen deprivation may be increased by pharmacological intervention, adaptation to chronic hypoxia, or preconditioning. Because the immature heart is significantly more dependent on transsarcolemmal calcium entry to support contraction, the pharmacological protection achieved with drugs that interfere with calcium handling is markedly altered. Developing hearts demonstrated a greater sensitivity to calcium channel antagonists; a dose that induces only a small negative inotropic effect in adult rats stops the neonatal heart completely. Adaptation to chronic hypoxia results in similarly enhanced cardiac resistance in animals exposed to hypoxia either immediately after birth or in adulthood. Moreover, decreasing tolerance to ischemia during early postnatal life is counteracted by the development of endogenous protection; preconditioning failed to improve ischemic tolerance just after birth, but it developed during the early postnatal period. Basic knowledge of the possible improvements of immature heart tolerance to oxygen deprivation may contribute to the design of therapeutic strategies for both pediatric cardiology and cardiac surgery.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3