Molecular determinants of channel function

Author:

Andersen O. S.1,Koeppe R. E.1

Affiliation:

1. Department of Physiology and Biophysics, Cornell University Medical College, New York, New York.

Abstract

The 40 years since the seminal papers of Hodgkin and Huxley appeared have been extraordinarily productive in terms of understanding the molecular basis for electrical activity. The Hodgkin-Huxley proposal that electrical excitability should be understood in terms of voltage-dependent changes in discrete sites has been resoundingly verified. Indeed, the Hodgkin-Huxley framework is remarkable in that its essential elements have remained largely intact as molecular understanding has advanced. This robustness is, at least in part, a result of the fact that Hodgkin and Huxley developed a mathematical model, based on simple physical arguments, that was sufficiently comprehensive to describe the kinetics of the voltage-clamped currents and yet simple enough to be predictive. The predictive features were demonstrated early by the reconstruction of both space-clamped and propagated action potentials on a desk-top calculator (293) and, later, when the sites of Hodgkin and Huxley developed into being well-characterized molecular structures. Voltage- and ligand-dependent ion-selective channels are now the established framework within which cellular electrophysiology is being pursued. Moreover, electrophysiological measurements of membrane and single-channel currents have become essential tools to examine molecular questions pertaining to channel structure and activity. The last 10 years have witnessed spectacular activity, which has resulted from two developments, the giga-seal patch clamp (249) and the elucidation of primary sequences of a number of channel-forming proteins (494), along with the first outlines of their low-resolution three-dimensional structures (651). The stage is now set for 1) applying a variety of convergent techniques to decipher molecular structural details at high resolution, and 2) seeking to understand the complex dynamic functions, gating, and ion selectivity at the molecular level. The early successes are likely to be in understanding the molecular determinants of ion conductance and selectivity, initially in terms of quantitative descriptions of how a sequence modification can alter a channel's permeability characteristics. Channel gating is a far more elusive target because it involves molecular rearrangements, which are poorly understood at any level of description and which may be modified by the channel's environment. The general mechanisms of ion permeation and gating will differ among different classes of ion channels, but a molecular understanding of either phenomenon must eventually be based on an understanding of intermolecular forces, which are invariant among all channel types.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3