Affiliation:
1. Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California
Abstract
Apoptosis is an essential physiological process by which multicellular organisms eliminate superfluous cells. An expanding family of Bcl-2 proteins plays a pivotal role in the decision step of apoptosis, and the differential expression of Bcl-2 members and their binding proteins allows the regulation of apoptosis in a tissue-specific manner mediated by diverse extra- and intracellular signals. The Bcl-2 proteins can be divided into three subgroups: 1) antiapoptotic proteins with multiple Bcl-2 homology (BH) domains and a transmembrane region, 2) proapoptotic proteins with the same structure but missing the BH4 domain, and 3) proapoptotic ligands with only the BH3 domain. In the mammalian ovary, a high rate of follicular cell apoptosis continues during reproductive life. With the use of the yeast two-hybrid system, the characterization of ovarian Bcl-2 genes serves as a paradigm to understand apoptosis regulation in a tissue-specific manner. We identified Mcl-1 as the main ovarian antiapoptotic Bcl-2 protein, the novel Bok (Bcl-2-related ovarian killer) as the proapoptotic protein, as well as BOD (Bcl-2-related ovarian death agonist) and BAD as the proapoptotic ligands. The activity of the proapoptotic ligand BAD is regulated by upstream follicle survival factors through its binding to constitutively expressed 14–3-3 or hormone-induced P11. In contrast, the channel-forming Mcl-1 and Bok regulate cytochrome crelease and, together with the recently discovered Diva/Boo, control downstream apoptosis-activating factor (Apaf)-1 homologs and caspases. Elucidation of the role of Bcl-2 members and their interacting proteins in the tissue-specific regulation of apoptosis could facilitate an understanding of normal physiology and allow the development of new therapeutic approaches for pathological states.
Publisher
American Physiological Society
Subject
Physiology (medical),Molecular Biology,Physiology,General Medicine
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献