Affiliation:
1. Institute for Experimental Medical Research, University of Oslo, Ullevaal Hospital, Oslo, Norway; Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense; and National Institute of Occupational Health, Copenhagen, Denmark
Abstract
Since it became clear that K+shifts with exercise are extensive and can cause more than a doubling of the extracellular [K+] ([K+]s) as reviewed here, it has been suggested that these shifts may cause fatigue through the effect on muscle excitability and action potentials (AP). The cause of the K+shifts is a transient or long-lasting mismatch between outward repolarizing K+currents and K+influx carried by the Na+-K+pump. Several factors modify the effect of raised [K+]sduring exercise on membrane potential ( Em) and force production. 1) Membrane conductance to K+is variable and controlled by various K+channels. Low relative K+conductance will reduce the contribution of [K+]sto the Em. In addition, high Cl−conductance may stabilize the Emduring brief periods of large K+shifts. 2) The Na+-K+pump contributes with a hyperpolarizing current. 3) Cell swelling accompanies muscle contractions especially in fast-twitch muscle, although little in the heart. This will contribute considerably to the lowering of intracellular [K+] ([K+]c) and will attenuate the exercise-induced rise of intracellular [Na+] ([Na+]c). 4) The rise of [Na+]cis sufficient to activate the Na+-K+pump to completely compensate increased K+release in the heart, yet not in skeletal muscle. In skeletal muscle there is strong evidence for control of pump activity not only through hormones, but through a hitherto unidentified mechanism. 5) Ionic shifts within the skeletal muscle t tubules and in the heart in extracellular clefts may markedly affect excitation-contraction coupling. 6) Age and state of training together with nutritional state modify muscle K+content and the abundance of Na+-K+pumps. We conclude that despite modifying factors coming into play during muscle activity, the K+shifts with high-intensity exercise may contribute substantially to fatigue in skeletal muscle, whereas in the heart, except during ischemia, the K+balance is controlled much more effectively.
Publisher
American Physiological Society
Subject
Physiology (medical),Molecular Biology,Physiology,General Medicine
Cited by
391 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献