Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation

Author:

Edwards F. A.1

Affiliation:

1. Department of Pharmacology, University of Sydney, New South Wales,Australia.

Abstract

Detailed knowledge of the anatomy of central synapses is essential to the interpretation of the vast quantity of electrophysiological findings that have been published in recent years. When their function is considered, it is not surprising that, in both anatomy and electrophysiology, fast central synapses show important differences to the neuromuscular junction. This review concentrates on the detailed anatomy of the common excitatory synapses that impinge on dendritic spines, but also refers to other glutamatergic and GABAergic synapses. This information is brought together with present knowledge of the electrophysiology of fast neurotransmission in the brain. Various types of evidence are outlined, explaining why it is now widely accepted that release of transmitter from a single vesicle virtually saturates the small number of receptors available on the postsynaptic membrane of central synapses. Finally, the anatomic literature suggests that a particular type of spine synapse, which electron microscopy reveals to have a perforated active zone, may represent a synapse with high efficacy. This suggestion is shown to be completely compatible with the electrophysiological data, and a model is presented that shows that all the apparently conflicting data in the field of long-term potentiation could be compatible. This stresses the need for cooperative collaboration between laboratories that have apparently conflicting findings.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3