Neurophysiology of locomotor automatism

Author:

Shik M. L.,Orlovsky G. N.

Abstract

It had long been known that the decapitated cock can cross a yard. During the last century an automatic mechanism controlling stepping movements has also been found in other vertebrates. The system controlling locomotion has many features similar to these systems controlling other natural movements: respiration (28), micturition (98), scratching (154), mastication (33), etc. Today we know that there are spinal automatisms for each limb generating its stepping movements. Activity of these automatisms depends essentially on the afferent inflow from the moving limbs. There also is interaction of the limbs during locomotion that promotes their coordination. The existence of two descending systems with different functions in the control of locomotion (Fig. 1) also can be considered as an established fact. Activity of a number of neurons involved in the control of locomotion has been studied directly during locomotion in decorticate, thalamic, and mesencephalic cats. To explain the experimental data at hand, several hypotheses of organization of the spinal automatism of stepping have been forwarded: a chain-reflex hypothesis, a hypothesis of two reciprocal half-centers, and a ring hypothesis (Fig. 2). Although general features of the system controlling locomotion are more or less clear, many questions are not yet answered. It is unknown what relative contributions to motoneuronal activity are made by proprioceptive reflexes versus influences from the automatism of stepping. Furthermore the structure of the spinal stepping automatism is not known. It is not clear if the spinal stepping automatisms of the forelimbs are as potent as those of the hindlimbs. The descending system responsible for activation of the spinal automatism of stepping has not yet been identified in direct experiments. The inputs and outputs of the subthalamic and midbrain "locomotor" regions have not been found, and we know almost nothing about intrinsic interaction of neurons in these regions. The role of inhibitory thalamic influences is scarcely known. Finally, we have no data concerning the influence of either cortical (42, 186) or visual mechanisms in locomotor control.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 815 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3