Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics

Author:

Holstein-Rathlou N. H.1,Marsh D. J.1

Affiliation:

1. Department of Medical Physiology, University of Copenhagen,Denmark.

Abstract

The arterial blood pressure, a physiological variable on which all renal excretory processes depend, fluctuates over a wide range of amplitudes and frequencies. Much of this variation originates in nonrenal vascular beds to support nonrenal tasks, and the fluctuations provide a noisy environment in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply reactive but have their own spontaneous dynamics. Both TGF and the myogenic mechanism oscillate autonomously. The TGF oscillation is the better understood of the two. There is an oscillation of tubular pressure, proximal tubular flow, early distal Cl- concentration, and efferent arteriolar blood flow at approximately 35 mHz; all these variables are synchronized when the measurements are made in a single tubule. The autonomous nature of the oscillation is supported by simulations of the nephron and its vasculature, which show that for a reasonable representation of the dynamics of these structures and of the parameters that govern their behavior, the solutions of the equation set are periodic at the frequency of the observed oscillation, and with the same phase relationships among its variables. The simulations also show that the critical variables for the development of the oscillation are the open-loop gain of the feedback system, and the various delays in the system of which convective transport in the axis of the thick ascending limb and signal transmission between the macula densa and the afferent arteriole are the most important. The oscillation in TGF is an example of nonlinear dynamical behavior and is yet another in a long list of oscillations and related dynamics arising in the inherently nonlinear properties of living systems. Some nonlinear systems can bifurcate to states known collectively as deterministic chaos, and TGF is a clear example of such a system. Rats with two different and unrelated forms of experimental hypertension provide tubular pressure records that pass statistical tests for ordered structure and sensitive dependence on initial conditions in the reconstructed state space, two of the hallmarks of deterministic chaos. These records also pass recent more stringent tests for chaos. The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental discovery.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3