Electrical Dimension of the Nuclear Envelope

Author:

Mazzanti Michele1,Bustamante José Omar1,Oberleithner Hans1

Affiliation:

1. Dipartmento di Biologia Cellulare e dello Sviluppo, Università “la Sapienza,” Rome, Italy; Nuclear Physiology Lab, University Tiradentes, Aracaju, Sergipe, Brazil; and Department of Physiology, University of Münster, Münster, Germany

Abstract

Eukaryotic chromosomes are confined to the nucleus, which is separated from the rest of the cell by two concentric membranes known as the nuclear envelope (NE). The NE is punctuated by holes known as nuclear pore complexes (NPCs), which provide the main pathway for transport of cellular material across the nuclear-cytoplasmic boundary. The single NPC is a complicated octameric structure containing more than 100 proteins called nucleoporins. NPCs function as transport machineries for inorganic ions and macromolecules. The most prominent feature of an individual NPC is a large central channel, ∼7 nm in width and 50 nm in length. NPCs exhibit high morphological and functional plasticity, adjusting shape to function. Macromolecules ranging from 1 to >100 kDa travel through the central channel into (and out of) the nucleoplasm. Inorganic ions have additional pathways for communication between cytosol and nucleus. NE can turn from a simple sieve that separates two compartments by a given pore size to a smart barrier that adjusts its permeabiltiy to the metabolic demands of the cell. Early microelectrode work characterizes the NE as a membrane barrier of highly variable permeability, indicating that NPCs are under regulatory control. Electrical voltage across the NE is explained as the result of electrical charge separation due to selective barrier permeability and unequal distribution of charged macromolecules across the NE. Patch-clamp work discovers NE ion channel activity associated with NPC function. From comparison of early microelectrode work with patch-clamp data and late results obtained by the nuclear hourglass technique, it is concluded that NPCs are well-controlled supramolecular structures that mediate transport of macromolecules and small ions by separate physical pathways, the large central channel and the small peripheral channels, respectively. Electrical properties of the two pathways are still unclear but could have great impact on the understanding of signal transfer across NE and gene expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3