An electroolfactogram study of odor response patterns from the mouse olfactory epithelium with reference to receptor zones and odor sorptiveness

Author:

Coppola D. M.1,Waggener C. T.2,Radwani S. M.1,Brooks D. A.1

Affiliation:

1. Department of Biology, Randolph-Macon College, Ashland, Virginia; and

2. Department of Biology, Virginia Commonwealth University, Richmond, Virginia

Abstract

Olfactory sensory neuron (OSN) responses to odors, measured at the population level, tend to be spatially heterogeneous in the vertebrates that have been studied. These response patterns vary between odors but are similar across subjects for a given stimulus. However, few species have been studied making functional interpretation of these patterns problematic. One proximate explanation for the spatial heterogeneity of odor responses comes from evidence that olfactory receptor (OR) genes in rodents are expressed in OSN populations that are spatially restricted to a few zones in the olfactory epithelium (OE). A long-standing functional explanation for response anisotropy in the OE posits that it is the signature of a supplementary mechanism for quality coding, based on the sorptive properties of odor molecules. These theories are difficult to assess because most mapping studies have utilized few odors, provided little replication, or involved but a single species (rat). In fact, to our knowledge, a detailed olfactory response “map” has not been reported for mouse, the species used in most studies of gene localization. Here we report the results of a study of mouse OE response patterns using the electroolfactogram (EOG). We focused on the medial aspect of olfactory turbinates that are accessible in the midsagittal section. This limited approach still allowed us to test predictions derived from the zonal distribution of OSN types and the sorption hypothesis. In 3 separate experiments, 290 mice were used to record EOGs from a set of standard locations along each of 4 endoturbinates utilizing 11 different odors resulting in over 4,400 separate recordings. Our results confirmed a marked spatial heterogeneity in odor responses that varied with odor, as seen in other species. However, no discontinuities were found in the odor-specific response patterns across the OE as might have been predicted given the existence of classical receptor zones nor did we find clear support for the hypothesis that OE response patterns, presumably a reflection of OSN distribution, have been shaped through natural selection by the relative sorptive properties of odors. We propose that receptor zones may be an epiphenomenon of a contingent evolutionary process. In this formulation, constraints on developmental programs for distributing OSN classes within the OE may be minimally related to the odor ligands of specific class members. Further, we propose that odor sorptiveness, which appears to be correlated with the inherent response patterns in the OE of larger species, may be of minimal effect in mice owing to scaling issues.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3