Trunk Sensorimotor Cortex Is Essential for Autonomous Weight-Supported Locomotion in Adult Rats Spinalized as P1/P2 Neonates

Author:

Giszter Simon,Davies Michelle R.,Ramakrishnan Arun,Udoekwere Ubong Ime,Kargo William J.

Abstract

Unlike adult spinalized rats, approximately 20% of rats spinalized as postnatal day 1 or 2 (P1/P2) neonates achieve autonomous hindlimb weight support. Cortical representations of mid/low trunk occur only in such rats with high weight support. However, the importance of hindlimb/trunk motor cortex in function of spinalized rats remains unclear. We tested the importance of trunk sensorimotor cortex in their locomotion using lesions guided by cortical microstimulation in P1/P2 weight-supporting neonatal spinalized rats and controls. In four intact control rats, lesions of hindlimb/trunk cortex caused no treadmill deficits. All spinalized rats lesioned in trunk cortex ( n = 16: 4 transplant, 6 transect, 6 transect + fibrin glue) lost an average of about 40% of their weight support. Intact trunk cortex was essential to their level of function. Lesion of trunk cortex substantially increased roll of the hindquarters, which correlated to diminished weight support, but other kinematic stepping parameters showed little change. Embryonic day 14 (E14) transplants support development of the trunk motor representations in their normal location. We tested the role of novel relay circuits arising from the grafts in such cortical representations in E14 transplants using the rats that received (noncellular) fibrin glue grafting at P1/P2 (8 allografts and 32 xenografts). Fibrin-repaired rats with autonomous weight support also had trunk cortical representations similar to those of E14 transplant rats. Thus acellular repair and intrinsic plasticity were sufficient to support the observed features. Our data show that effective cortical mechanisms for trunk control are essential for autonomous weight support in P1/P2 spinalized rats and these can be achieved by intrinsic plasticity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3