Postsynaptic Dorsal Column and Cuneate Correlations in the Raccoon: A Re-evaluation by Parallel-Cascade Analysis

Author:

French Andrew S.1,Dick Susan H.1,Rasmusson Douglas D.1

Affiliation:

1. Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada

Abstract

In a previous study, we reported evidence for correlations between the firing of postsynaptic dorsal column (PSDC) neurons and cuneate neurons with overlapping receptive fields on the glabrous skin of the raccoon forepaw. The evidence was based on cross-correlation and frequency response analyses of spontaneously firing neurons. However, cross-correlation without white noise Gaussian analog inputs or Poisson distributed pulse train inputs is difficult to interpret because of the inherent convolution with the autocorrelation of the unknown input signals. While the data suggested positive correlations in the spinocuneate direction for most neuron pairs, we could not estimate the temporal characteristics of these putative connections. We have now re-analyzed these data using a parallel-cascade method to estimate the first- and second-order kernels of a Volterra series approximation to the spinocuneate system. This unbiased analysis suggests that a positive correlation occurs after about 5 ms, probably followed by a negative correlation at about 12 ms. Second-order kernels also had repeatable structure, indicating dual pathways with time separations of at least 10 ms.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3