Impaired Transmission in the Corticospinal Tract and Gait Disability in Spinal Cord Injured Persons

Author:

Barthélemy Dorothy12,Willerslev-Olsen Maria1,Lundell Henrik13,Conway Bernard A.4,Knudsen Hanne5,Biering-Sørensen Fin65,Nielsen Jens Bo1

Affiliation:

1. Department of Exercise and Sport Sciences and Department of Neuroscience and Pharmacology;

2. School of Rehabilitation, Université de Montréal, Montreal, Canada

3. Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre;

4. Bioengineering Unit, University of Strathclyde, Glasgow, United Kingdom; and

5. Clinic for Spinal Cord Injuries, Rigshospitalet, Hornbæk, Denmark;

6. Faculty of Health Sciences, University of Copenhagen, Copenhagen;

Abstract

Rehabilitation following spinal cord injury is likely to depend on recovery of corticospinal systems. Here we investigate whether transmission in the corticospinal tract may explain foot drop (inability to dorsiflex ankle) in persons with spinal cord lesion. The study was performed in 24 persons with incomplete spinal cord lesion (C1 to L1) and 15 healthy controls. Coherence in the 10- to 20-Hz frequency band between paired tibialis anterior muscle (TA) electromyographic recordings obtained in the swing phase of walking, which was taken as a measure of motor unit synchronization. It was significantly correlated with the degree of foot drop, as measured by toe elevation and ankle angle excursion in the first part of swing. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) in the TA. The amplitude of the MEPs at rest and their latency during contraction were correlated to the degree of foot drop. Spinal cord injured participants who exhibited a large foot drop had little or no MEP at rest in the TA muscle and had little or no coherence in the same muscle during walking. Gait speed was correlated to foot drop, and was the lowest in participants with no MEP at rest. The data confirm that transmission in the corticospinal tract is of importance for lifting the foot during the swing phase of human gait.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3