Identifying Representative Synergy Matrices for Describing Muscular Activation Patterns During Multidirectional Reaching in the Horizontal Plane

Author:

Muceli Silvia1,Boye Andreas Trøllund1,d'Avella Andrea2,Farina Dario1

Affiliation:

1. Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and

2. Department of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy

Abstract

Muscle synergies have been proposed as a simplifying principle of generation of movements based on a low-dimensional control by the CNS. This principle may be useful for movement restoration by, e.g., functional electrical stimulation (FES), if a limited set of synergies can describe several functional tasks. This study investigates the possibility of describing a multijoint reaching task of the upper limb by a linear combination of one set of muscle synergies common to multiple directions. Surface electromyographic (EMG) signals were recorded from 12 muscles of the dominant upper limb of eight healthy men during single-joint movements and a multijoint reaching task in 12 directions in the horizontal plane. The movement kinematics was recorded by a motion analysis system. Muscle synergies were extracted with nonnegative matrix factorization of the EMG envelopes. Synergies were computed either from the single-joint movements to describe the two degrees of freedom independently or from the multijoint movements. On average, the multijoint reaching task could be accurately described in all the directions (coefficient of determination >0.85) by a linear combination of either four synergies extracted from the individual degrees of freedom or three synergies extracted from multijoint movements in at least three reaching directions. These results indicate that a large set of multijoint movements can be generated by a synergy matrix of limited dimensionality and common to all directions if the synergies are extracted from a representative number of directions. The linear combination of synergies may thus be used in strategies for restoring functions, such as FES.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3